Kaon Studies: K Identification & Beam Flux

C. Allgower, A. Gibson, D. Grosnick, D. Koetke, R. W. Manweiler, H. Spinka, S. Stanislaus

Valparaiso University, Valparaiso, Indiana

Argonne National Laboratory, Argonne, Illinois 60439

I. Data Summary

Set A: K⁻ Beam Runs Target Full (Runs 138, 140, 141,143)

Reactions Studied:

$$K^-p \longrightarrow \Lambda \pi^0 \longrightarrow (n \pi^0)\pi^0 \longrightarrow n+4 \gamma$$
 (1)

$$K^{-}$$
 p $\longrightarrow \Sigma^{0} \pi^{0}$
 $\longrightarrow (\Lambda \gamma) \pi^{0} \longrightarrow (n \pi^{0}) \gamma \pi^{0} \longrightarrow n + 5 \gamma$ (2)

$$K^{-}p \longrightarrow K^{0} \quad m \longrightarrow (\pi^{0}\pi^{0}) \quad n \longrightarrow n + 4 \gamma$$
 (3)

Set B: π Beam Run -- Target Full: Run 50

Dominate Background:

$$\pi^{-}p \longrightarrow n \pi^{0} \longrightarrow n + 2 \gamma$$
 (4)

C: Other Studies:

Target Empty K⁻ Beam Run (Run 142)

• No surprises -- not discussed herein

K Beam Runs Target Full, but Time-of-Flight Off

• K⁻ 's not observed

WORM Rejection: Backward Direction θ_{CUT} Dependence

• $\theta_{CUT} = 130^{\circ}$ or 120° Both reject **WORMS**

II. Code/Calibration

- CB Analyzer
- User code (cb_kaon) to implement cuts and histogram
- Calibration Method of S. Stanislaus

III. Time-of-Flight (TOF) Histograms

TOF Using Scalars S1 & ST ($t_{TOF} = T_{S1} - T_{ST}$)

A. K⁻ Runs (Data Set A)

- (i): All Events for Call to User Code
- (ii) Cuts: $\theta > 130^{\circ}$ No cluster with E > 20 MeV x_beam & y_beam > 4.0 cm at z = 0
- (iii) Cuts: Above Cuts Outside of K_{TOF} Window

[K_{TOF} Window: -5.5 ns < t_{TOF} < -4.0 ns]

B. π Runs

- (i): All Events for Call to User Code
- (ii) Cuts: $\theta > 130^{\circ}$ At least 1 cluster with E > 20 MeV x_beam & y_beam OK at z = 0
- (iii) Cuts: Above and $T_{TOF} < -6.0 \text{ ns} \quad (\pi_{TOF} \text{ Window})$
- Note Ratio $R_{\pi K} = (\# \pi 's / \# K's) = \sim 50$

IV. Two Cluster Invariant Mass Distributions

- A. For K⁻ Beam Runs (Set A) {Fig. 1a}
- B. For π^{-} Beam Runs (Set B) {Fig. 1b}
- π peak in both sets
- π peak washed out if no θ_{CUT}

V. π^0 Missing Mass Distributions

- A. For K⁻ Beam Runs (Set A) {Fig. 2a}
- B. For π Beam Runs (Set B) {Fig. 2b} Analyzed <u>as</u> though they were <u>K</u>'s
- Peak at Λ mass
- Shoulder at Σ -mass (? perhaps)
- But note that π 's (analyzed as K-) produce MM at Λ !!
 - ∴∃ Possibility of contamination from π reaction!
 - Is TOF region π free? How Can we measure contamination?

VI. π^0 Frequency Distributions with Cut on Λ or Σ^0 Missing Mass Window

- A. For K⁻ Beam Runs -- Λ & Σ ⁰ Windows {Fig. 3a, b}
- B. For π^- Beam Runs {Fig. 3 c, d} (Analyzed as though they were K^- 's)
 - Extremely few two π clusters with π^- Beam.
 - Suggests cut to Select K⁻ over π ⁻ reaction
 - Gain by factor of ~100
- C. Number of Clusters for Above Shown in Fig. 3 e-h

VII. Neutron Signal: Select Events within Λ Missing Mass Window (M $_{\Lambda}$ ± 36 MeV)

Calculate Missing Mass off two π^{o} Invariant Mass

- A. For K⁻ Beam Runs {Fig. 4a}
- B. For π^- Beam Runs {Fig. 4b}
 - Neutrons Evident in Missing Mass in both π^- & K reactions, but gain by factor of 100
 - Few events with 4 clusters + neutron { Fig. 4c}

VIII. Select Events within Σ^- Missing Mass Window ($M_{\Sigma} \pm 36$ MeV)

Calculate Missing Mass off two π° Invariant Mass (MM should be from neutron + decay γ)

- A. For K⁻ Beam Runs {Fig. 5a}
- B. For π^- Beam Runs {Fig. 5b}

IX. K- K⁰ Charge Exchange

- A. For K⁻ Beam Runs {Fig. 6a}
- B. For π^- Beam Runs {Fig. 6b}
- C. Missing Mass off Two π^- Invariant Mass{Fig. 7}
 - K⁰ peak present
 - n present in Missing Mass
 - Further Study needed

X. Conclusions

- K- reactions positively identified
- K⁻ p Signal Enhanced Using Cut On Number π⁰ 's
- Cuts on Missing Mass Confirm Reactions
- π reaction "contamination" rejected by about a factor of 100

XI. Estimates of # K⁻ 's and Beam Rates

 $\# K^{-} = (\# Detected Events) / [(Acceptance) (\rho L N_A) (\sigma)]$

- *Number Detected Events --* Detected Events are those with two π^0 's Figure 3 (confirmed by Fig. 4)
- Acceptance:
 - (i) Assume isotropic π^0 distribution for Ballpark Estimate
 - (ii) Cut on Solid Angle: $30^{\circ} < \theta_{LAB} < 130^{\circ}$ Gives factor of $(.75)^{2}$ for each π°
- *Cross Section*: $\sigma_{\Lambda} = 1.02 \text{ mb}$ (Reaction 1) $\sigma_{\Sigma} = 0.8 \text{ mb}$ (Reaction 2)
- Target Length L = 10 cm
- H Density: $\rho = .0708 \text{ gm/cm}^3$

Results for 4 runs (Set A):

For 30 Λ Events: # K⁻ = 0.22 10⁶ For 32 Σ Events: # K⁻ = 0.26 10⁶

Beam Rate = # K⁻/Running Time

Run Time ~ 4 hr

Rate: 60 10³ K⁻/hr

Projection to 1998 γΛ Rates:

30 EVENTS/ 4 Hrs ==> 10 Events/Hr of π Λ Improve by x30 ==> 300 Events/Hr of π Λ or 3 Events/Hr γ Λ 300 Events/Wk γ Λ

X. Conclusions For 1998 Data Taking Run

- •• Mighty Few K⁻ 's in '97 Engineering Runs
- • Need Good K-Tune:

Mysterious Log Book Notes on Magnet Trip & CTP Logical.

 • Must Budget Adequate Time to Do Quality Experiment